Иван Степанович Алексеев Металлы драгоценные



бет19/26
Дата26.11.2016
өлшемі5,03 Mb.
#2547
1   ...   15   16   17   18   19   20   21   22   ...   26
В ювелирном деле родиевые покрытия вытесняют серебряные и платиновые. Покрытие производится в ваннах из комплексных сульфатов и фосфатов родия в растворе серной или фосфорной кислоты с содержанием родия 2 г/л при температуре 45–50 °C и плотности тока от 200 до 800 А/м2. Толщина покрытия для ювелирных изделий составляет 0,000025 мм, для более прочного покрытия необходима толщина слоя 0,002 мм. Лучше всего родий осаждается на никелевую поверхность.
При родировании хорошие результаты получаются при старении ванны, т, е. при определенной выдержке электролита от момента приготовления до употребления. Лучше вводить родий в электролит в виде гидроокиси. Качество осадков родия зависит от способа приготовления и растворения гидроокиси.
Растворы цианистых и роданистых комплексных солей родия не образуют осадков из-за выделения водорода.
При комнатной температуре и плотности тока 0,003 А/см2 получаются плотные осадки из электролитов, состоящих из раствора гидроокиси родия в фосфорной кислоте. Обильные осадки образуются при растворении гидроокиси родия в серной кислоте, а также в электролите, полученном путем растворения гидроокиси родия в щавелевой и хлорной кислотах.
Высокие каталитические свойства родия отмечены достаточно давно. Это предопределило его применение в химической промышленности, а в более позднее время – в производстве фильтров для нейтрализации автомобильных выхлопных газов, причем наиболее частое сочетание используемых металлов платина – палладий – родий. Эта сфера потребляет подавляющее количество производимого родия.
В химической промышленности он используется в качестве катализатора для гидрирования органических соединений в некоторых специфических случаях, причем количество родия составляет около 10 % массы гидрируемого вещества. Коричная кислота восстанавливается в гидрокоричную с выходом 35 %; малеиновая кислота – в янтарную с выходом 82 %.
Ряд специалистов считают, что наилучшим из исследованных сплавов катализаторов для окисления аммиака в азотную кислоту являются сплавы платины с 7-10 % родия или 20 % палладия, применяемые в производстве азотной кислоты.
Высокий выход (почти 100 %) дает родий при превращении бензонитрила в дибензиламин, ацетона в циклогексан и аммиак,
В сплаве с платиной он применяется в пирометрии для изготовления термопар, лабораторного оборудования, а также наконечников для перьев, ювелирных изделий, контактов.
Родий употребляется для приготовления керамических красок (черного цвета) и различных оттенков жидкого золота (глянцгольда), так как он увеличивает прочность слоя золота на керамической массе.
Из сплавов родия с платиной изготовляют коррозионно-стойкие спинареты, применяемые в производстве шелка и искусственного волокна.
В медицине родий используют в виде коллоидного раствора при лечении гриппа, а также для изготовления хирургических инструментов (в сплаве с платиной). Родий обладает превосходными бактерицидными свойствами – он обезвреживает воду, убивает болезнетворные микроорганизмы. Правда, серебро по понятным причинам в этой функции все же предпочтительнее.
Было и такое…
…И 78 ГРАММОВ РОДИЯ
Трудно сказать, для каких целей воруют очень редкие металлы, ведь им непросто найти применение на бытовом уровне. Неужели изъятый у преступников родии предназначался для хирургических инструментов или жидкокристаллических дисплеев?
По сведениям МВД Новосибирска за сентябрь 2001 г., при попытке сбыта крупной партии редких драгоценных металлов в городе задержана преступная группа в составе четырех человек, которая пыталась сбыть за несколько тысяч долларов США 350 г палладия и 78 г родия. Столь крупная партия таких редких металлов в Новосибирске изымается впервые.
Родиевый рынок сегодня и завтра
Потребление родия в мире в год составляет немногим более 16 т (правда, в 2000 г, оно превысило 20 т), Около 87 % приходится на производство катализаторов, примерно по 5 % используется при производстве стекла и в химической промышленности, более 1 % в электронике и около 2 % в других отраслях. Прирост использования родия в автомобилестроении наблюдается в Европе, более значительный – в Японии с одновременным снижением спроса в США. Частично этот рост был нейтрализован увеличением утилизации отработанных катализаторов и снижением потребления родия в промышленности.
В Европе увеличению потребления родия способствовал рост производства автомобилей. Кроме того, некоторые автомобилестроители увеличили вложения родия еще до введения в действие 3-й стадии законодательства по выхлопам газов, требующего значительного снижения содержания в выхлопах окислов азота. Эти новые стандарты полностью вступили в силу с 2001 г. и, как ожидается, будут способствовать дальнейшему росту спроса на родий в Европе в ближайшие три года.
Несмотря на то, что спрос на этот металл превышал предложение, ранее накопленные запасы позволили обеспечить снабжение действующего производства. Следствием этого является добавление родия к ряду чисто палладиевых каталитических систем для улучшения контроля за выбросами окислов азота и некоторого замещения палладия.
Ожидается дальнейший рост спроса на родий в Северной Америке. В частности, в 1998 г. Калифорния приняла вторую часть программы АНВ, в рамках которой предельное содержание окислов азота с 2004 г. будет сокращено на 75 %. В то же время ожидается, что прогресс в разработке двигателей и катализаторных технологий будет лимитировать степень дополнительной потребности в родии.
Спрос на родий со стороны японской автомобильной промышленности возрос, несмотря на сокращение объемов внутреннего автомобильного рынка. В ближайшие годы ожидается увеличение спроса на родий в связи с ужесточением законодательства по выхлопам как внутри страны, так и на экспортных рынках,
Б других странах мира спрос на родий уменьшился из-за снижения продаж и производства автомобилей, особенно в Корее и Бразилии. Эта тенденция «перевесила» увеличение выпуска автомобилей в Мексике и ужесточение законодательства по выхлопам в Индии, Малайзии и Аргентине.
Колебания спроса именно в этой сфере определяют цену родия, и, надо сказать, менялась она, возможно, не менее драматично, чем в случае с палладием. Как говорилось раньше, в конце 70-х годов во многих развитых странах началась активная борьба с загрязнением окружающей среды автомобильным транспортом, В связи с этим в производстве фильтров-нейтрализаторов стали использовать платиноиды. Сначала это были сплавы на основе родия, и цены на него начали быстро расти-с 312 долл. за унцию в 1983 г. до 929 долл. за унцию в 1985 г. За период с 1986 по 1988 г. среднемесячные цены родия среди нью-йоркских дилеров варьировались в пределах 1150-1300 долл. за тройскую унцию. В начале 1989 г. из-за проблем южноафриканского производителя Rustenburg Platinum Holdings цены на родий подпрыгнули до 2000 долл. за унцию. Дальше-больше: 3 июля 1990 г. цена на него подскочила до самого высокого за всю историю уровня – 7000 долл. за унцию.
К концу 90-х годов цена металла постепенно снижалась в связи с тем, что производители фильтров стали заменять родий более дешевым палладием, и в 1997 г. среднегодовая цена родия составила всего 298 долл. за унцию. Но через год она выросла почти в два раза – до 640 долл. за унцию, а к февралю 2000 г. превысила 2100 долл. Это самый высокий уровень с октября 1992 г. Однако в апреле цена опустилась до 1800 долл. В 2001 г. отмечено дальнейшее понижение, в отдельные месяцы даже менее 800 долл. за унцию. В начале 2002 г. унция родия временами еще стоила 1000 долл., но в феврале – марте ее цена была 960–980 долл.
В целом считается, что ценовая конъюнктура рынка родия будет зависеть от поставок металла из России, в частности «Норильским никелем», а также от развития производства металла в странах, не занимающих в настоящее время существенных позиций в поставках, и совершенствования технологий использования вторичного металла.
Перейдем к положению в других секторах рынка родия. В последнее время продолжались его закупки для катализаторов, используемых при производстве лекарственных препаратов.
За пределами Северной Америки спрос на родий наблюдается в основном для производства крупнотоннажной химической продукции, такой как уксусная кислота и оксоалкоголи. В то же время спрос со стороны производителей уксусной кислоты был низкий – они продолжали использовать имеющиеся у них складские запасы родия. В последние три года построено несколько установок по производству уксусной кислоты, в которых применяется иридиево-рутениевый катализатор вместо традиционной родиевой технологии, Вполне вероятно, что более широкое использование этого нового процесса будет способствовать снижению потребления родия в будущем.
Продажи родия для производства стеклоплавильных аппаратов несколько снижаются и составили менее 1 т. Слабая экономика азиатских и латиноамериканских стран препятствовала увеличению мощностей по выпуску стекловолокна, хотя ряд китайских предприятий модернизировал свои производства. Инвестиции в новые производства стекла для жидкокристаллических дисплеев тоже замедлились.
Наблюдалось также небольшое сокращение потребления родия в электрической промышленности, где он применяется в основном в термопарах, используемых при производстве стали и полупроводников. Негативное влияние на спрос оказало падение мирового производства стали и снижение инвестиций в новые мощности по производству полупроводниковых подложек.
Вот как выглядело соотношение спроса и предложения родия на конец XX – начало XXI столетия (по данным компании «Джонсон Матти»).
Родий: предложение по странам на рубеже столетий, тыс. унций

Родий: спрос по отраслям на рубеже столетий, тыс. унций


В заключение о странах-потребителях. Потребление родия по регионам на стыке двух веков распределялось следующим образом: Европа – 34 %, Северная Америка – 33 %, Япония и другие страны – примерно по 16 %.
Осмий – самый редкий платиноид
Ученый должен обладать чутьем или хотя бы развитым обонянием
Осмия так мало в природе и стоит он так дорого, что одну известную поговорку следовало бы переделать и для большей точности определять истинную редкость и ценность чего-либо словами «на вес осмия». Английский химик XIX в. Смитсон Теннант, открывший осмий, не был обеспокоен его редкостью, он зафиксировал другое качество металла.
Г-н Теннант начал изучение платиновой руды примерно в то же время, с тем же упорством и в итоге получил такой же блестящий результат, как и открыватель двух платиноидов Уильям Волластон.
Как и другие экспериментаторы, Теннант заметил, что песчинки, содержащие платину, растворялись в «царской водке» при длительном кипячении, но обычно что-то оставалось в осадке и никакие химические хитрости не помогали его растворить. Чутье подсказывало ему, что это какой-то металл или минерал. Для проверки самого себя Теннант стал действовать по той же схеме, что и Волластон. Он тщательно сортировал руду, собирал однородные песчинки и проверял их на растворимость,
Подозрение, что в осадке остаются «попутные» минералы, вскоре отпало. Оказалось, что даже самый сильный растворитель бессилен против песчинок, серых, с металлическим блеском, очень тяжелых, почти неотличимых от других, содержащих платину и растворимых.
Между собой нерастворимые песчинки тоже слегка различались по цветовым оттенкам. В поисках их отличия от растворимых платиновых и между собой Теннант испробовал многое, а успех принесла обычная паяльная трубка, В ее пламени все песчинки чернели, утрачивали металлический блеск, НО нерастворимые в отличие от растворимых становились пахучими. Резкий, раздражающий запах напоминал о чесноке и хлоре.
Терпеливо нюхая песчинки, Теннант установил, что одни издают сильный запах, другие – очень слабый, а некоторые становились пахучими лишь при сплавлении с селитрой.
Поскольку запах был специфическим признаком и указывал на существование какого-то неизвестного вещества, Теннант решил его так и назвать – осмий (по-гречески «запах»).
Предположив, что в песчинках, издающих сильный запах, много осмия, он начал за ним погоню проверенным и трудным методом проб и ошибок. И того и другого было немало, прежде чем удалось нащупать верный путь: измельченные песчинки удалось сплавить с цинком, а затем с перекисью бария и с помощью «царской водки» отделить в перегонном аппарате четырехокись осмия. А из нее был восстановлен оловянно-белый металл, который оказался тяжелее золота, платины и обладал другими повышенными характеристиками.
Основные свойства осмия
Осмий – металл оловянно-белого цвета с серо-голубым оттенком. Он легко поглощает водород, после чего может воепламениться при обыкновенной температуре. В мелкораздробленном состоянии осмий и некоторые его соединения являются энергичными катализаторами. При нагревании осмий окисляется перекисями натрия, калия, бария и смесью селитры с щелочью. Окисленный осмий растворим в «царской водке» и соляной кислоте. Атомная масса осмия 190,2.
Коэффициент линейного расширения при повышении температуры на ГС в интервале от 0 до 100 °C составляет 0,0000068.
При нагревании на воздухе осмий теряет массу вследствие образования летучих окислов.
Осмий абсолютно не поддается обработке давлением.
Плотность – 22,5 г/см3 (самый тяжелый МПГ).
Плавка осмия производится аппаратом, состоящим из кислородно-водородной горелки, печи и тигля. При наивысшей температуре кислородно-водородного пламени осмий не сплавляется, а превращается в синеватый порошок с металлическим блеском, В атмосфере кислородно-водородного пламени осмий легко улетучивается в виде осмиевой кислоты, вредной для здоровья, поэтому осмий и его сплавы лучше изготовлять в электропечи,
Температура плавления 3050 °C (наивысшая для платиноидов).
Температура кипения 5300 °C (самая высокая для МПГ),
Твердость по шкале Мооса 7,0 (самый твердый платиноид).
Существуют различные сплавы осмия, их насчитывается около десяти: осмий-железо, осмий-медь, осмий-олово, осмий-сера, осмий-иридий и т. д.
Чистый металлический осмий в виде мелкого порошка с металлическим блеском содержит 99,9 % осмия и 0,014 % рутения.
Запасы осмия
Содержание осмия в земной коре по одним данным составляет 9-10-10 %, по другим 5-10»6 %.
Месторождения платиновых металлов можно подразделить на два типа. Месторождения первого типа приурочены к ультраосновным породам, преимущественно дунитам, нередко ассоциирующимся с залежами хромита. К другому типу относятся месторождения, содержащие главным образом в основных породах (нориты, габбро-долериты) скопления сульфидов меди, никеля, железа. Осмий содержится в рудах месторождений обоих типов. Месторождения первого типа особенно распространены на Урале, второго типа – в Садбери (Канада) и в районе г. Норильска. Дунитовые месторождения находятся также в Южной Африке, Колумбии и США. В настоящее время руды медно-никелевых сульфидных месторождений являются одним из наиболее важных источников добычи металлов платиновой группы.
Осмий в природе встречается в виде минералов и в рассеянной форме, в виде изоморфной примеси во многих других минералах. Большинство известных минералов осмия связано с массивами ультраосновных пород, расположенных на Урале, в Южной Африке, Колумбии и США.
Основными минералами осмия следует считать природные сплавы иридия и осмия, имеющие собирательное название «осмистый иридий». Классификация различных видов осмистого иридия по их составу дана академиком В.И. Вернадским. По содержанию главных составных частей осмия и иридия ученый выделяет два главных вида: сысертскит (иридистый осмий), в котором преобладает осмий, и невьянскит (осмистый иридий), основной составной частью которого является иридий, Каждый из этих видов В.И. Вернадский делит на подвиды по признаку преобладания одной из второстепенных примесей – платины, рутения или родия.
В отличие от платины осмий не образует крупных месторождений, его кларки в 10-100 раз меньше кларков платины и палладия, что подтверждается соотношением платины и осмия в рудах различных платиноносных месторождений (табл. 3.2).
Месторождения наиболее известных типов осмистого иридия подразделяют на несколько видов.
1. Магматические, связанные:
с платиноносными дунитовыми массивами;
с перидотитовыми массивами;
с норитовым комплексом.
2. Гидротермальные – кварцевые золотоносные жилы.
3. Россыпные: элювиально-делювиальные; аллювиальные.
4. Метаморфизованные, связанные с норитовым комплексом (расположены в ЮАР).
Разнообразие типов месторождений осмистого иридия обусловливает различный состав этого минерала.
Таблица 3.2
Содержание платины и осмия в рудах различных месторождений
Месторождения сульфидных медно-никелевых руд, содержащие металлы платиновой группы, находятся в Садбери (Канада), Бушвельде (ЮАР), в районе Норильска и т. д. Первое детальное описание платиновой минерализации в медно-никелевых сульфидных рудах дано А.Д, Генкиным. Однако формы нахождения осмия в рудах этого типа до настоящего времени изучены недостаточно. Есть основания считать, что осмий, наряду с другими металлами платиновой группы, входит в кристаллические решетки сульфидов.
Установлено, что одним из основных концентратов платиновых металлов является пирротин. Различные разновидности этого минерала содержат значительную часть платины и палладия, изоморфно замещающих в них железо и никель, и, главным образом, редкие платиновые металлы – рутений, родий, иридий и осмий. Высокое содержание пирротина в перерабатываемых медно-никелевых сульфидных рудах свидетельствует о том, что абсолютное содержание в них такого ценного компонента, как осмий, довольно значительно.
Природные объекты, содержащие осмий в заметных количествах, не исчерпываются перечисленными породами и рудами.
Установлено, что изотоп рений-187, содержание которого в природном рении составляет 62,93 %, является радиоактивным и в результате р-распада превращается в изотоп осмий-187. Вследствие этого природные материалы, обогащенные рением, должны содержать повышенное количество осмия. В результате применения оригинальной методики это предположение подтверждено учеными на примере руд Джезказганского месторождения.
Заметные количества осмия определяются и в метеоритах: в каменных – 5-10 -5 и 0,91–10-4 %, в железных – 0,2-10-3 %.

Производство осмия


Итак, несмотря на то, что кларк осмия в земной коре примерно равен кларку платины, объем производства этого редкого платинового металла в мире невелик и составляет без учета запасов бывшего СССР немногим более 100 кг в год. Это объясняется весьма ограниченными и быстро истощающимися запасами осмистого иридия во всем мире, В то же время переработку сульфидных медно-никелевых руд – крупного источника получения осмия – осуществляют по различным технологическим схемам получения меди и никеля. В процессе переработки такого сырья осмий как бы «размазывается» по различным полупродуктам, отвальным шлакам, сбросным и оборотным растворам, пылям и газам. Извлечь осмий из множества указанных продуктов – сложная задача, которая стоит в настоящее время перед химиками и металлургами,
Определение основных продуктов концентрирования осмия на различных переделах металлургического производства и изучение форм нахождения его в каждом агрегатном состоянии представляют значительный интерес в связи с тем, что повышенные концентрации этого металла обусловливают необходимость разработки технологических схем извлечения осмия из того или иного продукта.
Основным источником получения металлов платиновой группы являются сульфидные медно-никелевые руды. Технологические схемы переработки таких руд включают операцию обогащения. Процесс ведут, как правило, способом коллективной флотации с последующим получением селективных никелевого и медного концентратов, а также отвальных хвостов обогащения. Осмий содержится во всех рудных и нерудных минералах, а также в пирротине и магнетите, которые в значительных количествах имеются в медно-никелевых сульфидных рудах.
В процессе обогащения наряду с нерудными минералами пирротин и магнетит частично переходят в отвальные продукты, в которых концентрируются значительные количества осмия и других редких платиновых металлов.
С целью извлечения никеля, меди и снижения потерь платиновых металлов с хвостами обогащения разработана автоклавно-окислительная технология переработки пирротиновых концентратов. Новая технологическая схема предусматривает выделение основной массы железа на головных операциях обогащения руд и получение сульфидного медно-никелевого концентрата, пригодного для пирометаллургической переработки по имеющейся технологии. Химические формы нахождения осмия и поведение их на каждой операции при окислительном выщелачивании концентратов, содержащих пирротин, чрезвычайно сложны.
Интересной особенностью осмия является то, что в технологии производства меди и никеля он распределяется по многочисленным продуктам – растворам, осадкам, шламам, газам и др. С целью концентрирования и последующего извлечения этого металла могут быть применены различные способы – экстракция, сорбция, осаждение, дистилляция.
Наиболее широкое применение экстракционного способа извлечения платиновых металлов обусловлено особыми свойствами платиноидов: склонностью их к комплексообразованию; легкостью перехода из одного валентного состояния в другое, что изменяет экстракционные свойства металлов и дает возможность разделить их; возможностью получения комплексов с разнообразными лигандами, что позволяет изменять знак заряда и, следовательно, применять все основные виды экстракции.
Наряду с экстракцией широко используются сорбционные методы разделения, очистки и выделения редких и благородных металлов. Применение ионного обмена для концентрирования металлов платиновой группы из растворов с большим содержанием примесей ограничивается в основном сорбцией примесей с оставлением платиноидов в растворе. Имеются способы отделения микрограммовых количеств осмия и рутения от меди, железа и никеля с использованием анионного обмена, осмия от рения, галогенокомплексов осмия от других платиновых металлов. Разработан способ извлечения осмия и других благородных металлов сорбцией их на модифицированном целлюлозном волокне. Способ позволяет отделять осмий от неблагородных металлов – никеля, меди, железа, кобальта и др., концентрация которых на три порядка превышает содержание благородных металлов, при извлечении из солянокислых и сульфатных растворов.
Что касается способа осаждения, то с помощью ряда неорганических и органических реагентов, выбор которых зависит от природы раствора, можно количественно осадить осмий из кислых и щелочных сред. Путем обработки щелочного раствора OsО4 избытком сульфида аммония и подкисления смеси соляной кислотой осмий осаждают в виде OsS2 Выделение осмия из раствора в форме его дисульфида можно осуществить также осаждением его сероводородом из кислых растворов, содержащих осмий.
В технологической и аналитической практике для выделения осмия из сложных смесей применяют способ дистилляции. Он основан на способности осмия образовывать летучую четырехокись при окислении твердых и жидких продуктов, содержащих этот металл. Способ дистилляции позволяет отделять осмий от основной массы сопутствующих платиновых и неблагородных металлов. Необходимо учитывать, что образование летучей четырехокиси свойственно не только осмию, но и рутению, Однако применение таких окислителей, как серная кислота – перекись водорода или азотная кислота, позволяет избирательно окислить и отделить осмий и от ближайшего аналога – рутения.
При переработке сульфидных медно-никелевых руд осмий с высокими показателями извлечения концентрируется в файнштейнах. Дальнейшее поведение осмия зависит от технологии переработки файнштейна.
При п и ро металлурги чес кой переработке продуктов флотации файнштейна осмий возгоняется на стадии обжига никелевого концентрата флотации файнштейна и в конце процесса конвертирования медных штейнов частично осаждается в оборотные пыли. При утилизации газов осмий концентрируется в промывной кислоте СКЦ, откуда успешно извлекается в течение многих лет на комбинате «Североникель». На Норильском ГМК газы не подвергаются мокрой очистке, и основная часть осмия теряется безвозвратно.
Гидрометаллургические методы переработки файнштейнов (Falkonbridge, Sumitomo и др.) с использованием гидрохлорирования или автоклавного окислительного выщелачивания создают предпосылки для обеспечения попутного высокого извлечения осмия.


Достарыңызбен бөлісу:
1   ...   15   16   17   18   19   20   21   22   ...   26




©www.engime.org 2024
әкімшілігінің қараңыз

    Басты бет