көбейткішін есептейміз.
Әрбір басшы емес жолдан көбейткішіне көбейтілген басшы жол
элементтерін мүшелеп шегереміз:
(2.2.3)
Сонда q-шы бағанның басшы элементтен басқа элементтері нөлге
айналады.
q-шы баған және басшы жолды тастап кетіп жаңа М1 матрица аласыз. Бастапқы матрицаның бағаны мен жол саны азаяды.
М1 матрицасына 2-5-ші пункттерді қайталап қолдану арқылы М2 матрицасын аламыз.
Осы процессті бір белгісізді бір жолдан тұратын теңдеу қалғанша жалғастырамыз.
Тастап кеткен басшы жолдардан жаңа жүйе құрастырамыз.
2. Кері жол алгоритмі
Басшы жолдардан құралған матрицаны әлдебір ауыстырулар арқылы үшбұрышты түрге келтіріп, ең соңғы теңдеуден ең соңғы белгісізді, оны қолданып оның алдындағы белгісізді, т.с.с. барлық белгісіздерді кері бағытта анықтаймыз.
сандары қаншалықты азайған сайын есептеу қателігі де азаяды. Сондықтан ЭЕМ-ді қолданып есептеу уақытында осы әдіс тиімді деп есептеледі.
Ескерту. Егер жүйе өте көп белгісіздерден тұрып, оның барлық элементтерінің арасынан модулі бойынша үлкен элементті табу қиынға соқса басшы жол ретінде жүйенің бірінші жолын, ал басшы элемент ретінде осы жолдың модулі бойынша ең үлкен элементін алуға болады.
3. Квадрат түбірлер әдісі.
(2.3.1)
Жүйенің матрицасы симметриялы элементтерден тұратын болса, онда мұндай жүйеге квадрат түбірлер әдісі қолданылады. Әдістің мақсаты ([13] қараңыз) берілген матрицаны бір-біріне түйіндес екі үшбұрыш матрицаның көбейтіндісі түріне келтірейік.
Достарыңызбен бөлісу: |