Қазақстан Республикасының Білім және ғылым министрлігі Шымкент қаласының Білім басқармасы


Күрделі радикалдары бар өрнектерді ықшамдау әдістемесі



бет4/10
Дата27.06.2023
өлшемі164,8 Kb.
#179202
1   2   3   4   5   6   7   8   9   10
Байланысты:
Әдістемелік нұсқау 2021-2022 оку жылы

3. Күрделі радикалдары бар өрнектерді ықшамдау әдістемесі

Мектеп курсында оқушылардың қызығушылығын тудыратын тақырыптардың бірі - «Күрделі радикалдар» формуласын қолданып өрнектерді ықшамдау. «Алгебра-8» (авт. Шыныбеков А.Н. Алматы: «Атамұра» баспасы, 2004.) оқулығында бұл тақырыпқа «С» тобының №180 және осы формуланы қолданып шығаруға болатын №№175; 217; 222(1,2); 227 есептері, «Математика тереңдетіліп оқытылатын мектептердің 9 сынып курсы бойынша математикадан жазбаша емтихан жұмыстарының тапсырмалар жинағындағы» ( Алматы: ББЖ БАИ,1999.) №1С41; 1С42; 1C45; 2C61; 4В42; 4С59; 5А22; 5В52; 5В53 және т.б. тапсырмалары жатады.


Бұл есептерді шығару үшін «Алгебра-8» оқулығындағы №179* есептегі «Күрделі радикалдар» формуласын алдын ала дәлелдеп алып, оны пайдалану өз нәтижесін берері сөзсіз. Бірақ, формуланың жалпы түрінің өзі (қосымша шарттарымен бірге) күрделі екенін ескерсек, кез келген оқушыға бұл формуланы есіне түсіріп немесе түбір астындағы өрнекті қосындының квадратына келтіріп, жоғарыда аталған есептерді шығару оңайға түспейтіні анық. Себебі, . (1) формуласын (дәлелдеуін білмеген оқушыға) жадында сақтау да қиын екені рас. Сондықтан, алдымен формуланың дәлелдемесінің әдістемелік нұсқауда көрсетілген тәсілінен басқа түрін келтірейік:
( , бұдан
. (2)
(3)
Осы жүйеден, анығырақ болу үшін, x>y деп пайымдап,
мәндері үшін , (4)
екендігін анықтауға болады. х>у екендігін ескерсек, (2), (3), (4) теңдіктерден (1) формула шығатындығына көз жеткізу қиын емес.
Енді, (2) теңдікті мына түрде жазып:
,
x+у=a және xу=b алмастыруларын жасасақ, күрделі радикалды ықшамдаудың алгоритмі пайда болады:
. (5)
Яғни, түріндегі күрделі радикалдарды ықшамдау үшін b санын (әдетте ) қосындысы а - ға тең болатындай етіп, екі натурал көбейткіштерге (х у) жіктеу жеткілікті.
16-мысал. өрнегін түрлендіріңіз.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©www.engime.org 2024
әкімшілігінің қараңыз

    Басты бет