Перспектива и проективная геометрия


Построение поляры одной линейкой



бет16/29
Дата06.05.2020
өлшемі0,73 Mb.
#66379
1   ...   12   13   14   15   16   17   18   19   ...   29
Байланысты:
Перспектива и проективная геометрия

Построение поляры одной линейкой


Первое и главное построение гармонической четверки связано с полным четырехвершинником. Естественно, поэтому, попытаться связать с ним и построение поляры. Для этого достаточно рассмотреть четырехвершинник, вершины которого лежат на коническом сечении. Проводя три его диагонали, получаем требуемое построение.

Действительно, на каждой стороне четырехвершинника образовалось по гармонической четверке. Например, диагональ АВ пересекает стороны четырехвершинника в точках, которые вместе с точкой С гармонически разделяют концы двух хорд конического сечения. Значит, прямая АВ является полярой точки С. Аналогично, прямые АС и СВ – это поляры точек С и А.

Трехвершинник АВС называется автополярным трехвершинником конического сечения, так как каждая его сторона служит полярой противоположной вершины.

Полученный чертеж можно воспроизвести, начиная с одной из точек А, В или С. Достаточно провести через нее любые две прямые, которые пересекут конику в четырех точках, а потом достроить остальные стороны и диагонали четырехвершинника. Теперь мы можем построить поляру любой точки относительно любого конического сечения. Таким образом, если дана любая точка вне конического сечения, можно построить две касательные при помощи одной линейки.



Это построение с одинаковым успехом можно применять к параболе, гиперболе или эллипсу, и, в частности, к окружности. То что касательные к окружности действительно можно строить таким образом, опять таки представляет собой весьма сложную задачу из «классической» геометрии. Во всяком случае, античным геометрам это построение не было известно.



Часто из технических соображений используют немного другое построение, не выходящее далеко за пределы окружности (конического сечения).

Заметим также, что теперь все проективные свойства поляр и полярного преобразования можно считать доказанными для произвольного конического сечения на проективной плоскости. Если, например, известно, что на евклидовой плоскости полярное преобразование относительно окружности сохраняет сложное отношение, то построив центральную проекцию на любую другую плоскость, увидим, что окружность станет коникой, полюса и поляры останутся полюсами и полярами, а все сложные отношения сохранятся. Значит и утверждение теоремы останется верным.





Достарыңызбен бөлісу:
1   ...   12   13   14   15   16   17   18   19   ...   29




©www.engime.org 2024
әкімшілігінің қараңыз

    Басты бет